
November 1, 1999 1

How Much CPU Time?

Expressing Meaningful Processing Requirements
among Heterogeneous Nodes in an Active Network

Virginie Galtier, Stefan Leigh, Kevin Mills, Doug Montgomery,
Mudumbai Ranganathan, Andrew Rukhin, Debra Tang

DARPA Active Nets PI Meeting – Nov. 17-19, 1999

November 1, 1999 2

Outline of Talk

• The Problem Statement
• The Main Sources of Variability Affecting CPU Time

Requirements of an Active Application
• Modeling Active Network Nodes and Active Applications

– Active Network Node Model
– Active Application Model
– Active Application Model Transforms

• Calibrating Active Network Nodes
• Generating Active Application Models
• Proof-of-Concept Results
• Potential Benefits of Success
• Future Work

November 1, 1999 3

The Problem Statement

How can one express the CPU time requirements of an Active
Application in a form that can be meaningfully interpreted among

heterogeneous nodes in an Active Network?

• In current network switches and routers, well-known, system-independent
metrics exist for two resources: bandwidth (bits per second) and memory
(bytes or byte/seconds). What about CPU cycles?

• Currently, per-packet processing requirements in a network node are fairly
homogeneous – Active Networks will change that situation.

• So an accepted, system-independent means of expressing CPU time
requirements will be needed to enable allocation and management of
CPU cycles among active network nodes.

November 1, 1999 4

A Conceptual Model of an Active Node

Node Hardware

NodeOS
Interface

Layer

• ••

EE1 EE2 EEn

Active Net
Application

Active Net
Application

Active Net
Application

Active Net
Application

Active Net
Application

Active Net
Application

Execution Environment Layer

Network Protocols
(Channels)

OS Scheduler &
Timer Services

(Threads)

OS Resource
Management

Services
(Flows, Thread Pools,

Memory Pools)

Network Device Drivers

Node Operating System Layer

Mapping of NodeOS API Layer to Real OS Services

S1 S2 S3 S4 SmNodeOS System Calls
• • •

Node Hardware

NodeOS
Interface

Layer

• ••

EE1 EE2 EEn

Active Net
Application

Active Net
Application

Active Net
Application

Active Net
Application

Active Net
Application

Active Net
Application

Execution Environment Layer

• ••• ••

EE1 EE2 EEn

Active Net
Application

Active Net
Application

Active Net
Application

Active Net
Application

Active Net
Application

Active Net
Application

Execution Environment Layer

Network Protocols
(Channels)

OS Scheduler &
Timer Services

(Threads)

OS Resource
Management

Services
(Flows, Thread Pools,

Memory Pools)

Network Device Drivers

Node Operating System Layer

Network Protocols
(Channels)

OS Scheduler &
Timer Services

(Threads)

OS Resource
Management

Services
(Flows, Thread Pools,

Memory Pools)

Network Device Drivers

Node Operating System Layer

Mapping of NodeOS API Layer to Real OS Services

S1 S2 S3 S4 SmNodeOS System Calls
• • •

Mapping of NodeOS API Layer to Real OS Services

S1 S2 S3 S4 SmNodeOS System Calls
• • •• • •

Three Layer Model
• Execution Environment
• Node OS Interface
• Node Operating System

Plus the Node Hardware

Helps to identify the sources of variability affecting
CPU time requirements in an Active Application.

November 1, 1999 5

Five Main Sources of Variability

1. Raw Performance of Node Hardware
2. Specific EE in which AA executes, along with the

mapping of the EE virtual machine to the node hardware
3. Mapping of Node OS system calls to real system calls in

the host operating system
4. Implementation of real system calls within the host

operating system, including the selection of specific
protocol modules to implement each instance of a Node
OS channel

5. Behavior of the AA itself

Any effective metric for CPU time usage in an Active Network Node
must account for five main sources of variability:

November 1, 1999 6

Proposed Three-Part Model for
Active Network Nodes and Active Applications

• Active Network Node Model
(accounts for first four sources of variability)

• Active Application Model
(accounts for fifth source of variability)

• Active Application Model Transforms

Each of these is explained in the next few slides.

November 1, 1999 7

Active Network Node Model

EE1 EE2 EE3

EEreference .456 s .758 s .326 s

EEnodeA .228 s .378 s .175 s

EEreference/EEnodeA 2 2.005291 1.86285714

S1 S2 S3 S4

Sreference .0054 ms .0109 ms .0012 ms .0075 ms

SnodeA .0108 ms .0179 ms .0036 ms .0167 ms

Sreference/SnodeA .5 .61 .33 .45

Node A: Execution Environment Vectors

Node A: Node OS Call Vectors

EE1 EE2 EE3

EEreference .456 s .758 s .326 s

EEnodeB .052 s .084 s .033 s

EEreference/EEnodeB 8.77 9.02 9.88

S1 S2 S3 S4

Sreference .0054 ms .0109 ms .0012 ms .0075 ms

SnodeB .0045 ms .0099 ms .0009 ms .0069 ms

Sreference/SnodeB 1.2 1.1 1.33 1.09

Node B: Execution Environment Vectors

Node B: Node OS Call Vectors

• Performance of the local node
and of a reference node with
respect to a benchmark
workload for each EE

• Ratio of reference node to
local node performance for
each EE benchmark

• Performance of the local node
and of a reference node with
respect to a benchmark
workload for each Node OS
call

• Ratio of reference node to
local node performance for
each Node OS call

Example for Two Nodes (Node A and B)

Node B is about
5x faster

November 1, 1999 8

Active Application Model

S2
TS2

S3
TS3

Sm
TSm

• • •

S0
Idle

S1
TS1

PS0-S0

TS0-S0

PS0-S2

TS0-S2 PS1-S1 TS1-S1

PS0-S1

TS0-S1

TS1-S0

PS1-S0

PS2-S2

TS2-S2

PS1-S2

TS1-S2

PS2-S1

TS2-S1

PS3-S2
TS3-S2

PS2-S3

TS2-S3

PS3-S3

TS3-S3

PS2-Sm

TS2-Sm

PSm-S2

TSm-S2

PS3-Sm

TS3-Sm

PSm-S3

TSm-S3

PSm-S0TSm-S0

PS0-Sm

TS0-Sm

TSm-Sm

PSm-Sm

PS3-S0 T3-S0

PS0-S3

TS0-S3

TS2-S0

PS2-S0

PSm-S1 TSm-S1

PS1-Sm

TS1-Sm

S2
TS2

S3
TS3

Sm
TSm

• • •• • •

S0
Idle

S1
TS1

PS0-S0

TS0-S0

PS0-S2

TS0-S2 PS1-S1 TS1-S1

PS0-S1

TS0-S1

TS1-S0

PS1-S0

PS2-S2

TS2-S2

PS1-S2

TS1-S2

PS2-S1

TS2-S1

PS3-S2
TS3-S2

PS2-S3

TS2-S3

PS3-S3

TS3-S3

PS2-Sm

TS2-Sm

PSm-S2

TSm-S2

PS3-Sm

TS3-Sm

PSm-S3

TSm-S3

PSm-S0TSm-S0

PS0-Sm

TS0-Sm

TSm-Sm

PSm-Sm

PS3-S0 T3-S0

PS0-S3

TS0-S3

TS2-S0

PS2-S0

PSm-S1 TSm-S1

PS1-Sm

TS1-Sm

• States denote AA calls
to Node OS

• Transitions denote AA
execution within EE

• Idle (Red) state denotes
beginning and end of an
AA execution thread

• T’s are CPU times attached
to states and transitions

• P’s are probabilities of each
transition

Continuous-Time, Finite-State
Markov Chain

Markov Model chosen as a first coarse approximation
of a more complex reality. Measurement data will
tell the real story – leading us to revise this model as
necessary.

November 1, 1999 9

Active Application Model (in Matrix Form)

S0 Idle

System Call CPU Time

TS1S1

TS2S2

TSmSm

TS3S3

•
•
•

•
•
•

S0 S1

• • •
PS0-S0

TS0-S0

PS0-S1

TS0-S1

PS0-S2

TS0-S2

PS0-S3

TS0-S3

PS0-Sm

TS0-Sm

S2 S3 Sm

•
•
•

•
•
•

•
•
•

•
•
•

• • •
PSm-So

TSm-S0

PSm-S1

TSm-S1

PSm-S2

TSm-S2

PSm-S3

TSm-S3

PSm-Sm

TSm-Sm

• • •
PS3-S0

TS3-S0

PS3-S1

TS3-S1

PS3-S2

TS3-S2

PS3-S3

TS3-S3

PS3-Sm

TS3-Sm

• • •
PS2-S0

TS2-S0

PS2-S1

TS2-S1

PS2-S2

TS2-S2

PS2-S3

TS2-S3

PS2-Sm

TS2-Sm

• • •
PS1-S0

TS1-S0

PS1-S1

TS1-S1

PS1-S2

TS1-S2

PS1-S3

TS1-S3

PS1-Sm

TS1-Sm

S0

S1

S2

S3

Sm

Node OS Call
State Vector Execution Environment Transition Matrix

S0 Idle

System Call CPU Time

TS1S1

TS2S2

TSmSm

TS3S3

•
•
•

•
•
•

S0 S1

• • •
PS0-S0

TS0-S0

PS0-S1

TS0-S1

PS0-S2

TS0-S2

PS0-S3

TS0-S3

PS0-Sm

TS0-Sm

S2 S3 Sm

•
•
•

•
•
•

•
•
•

•
•
•

• • •
PSm-So

TSm-S0

PSm-S1

TSm-S1

PSm-S2

TSm-S2

PSm-S3

TSm-S3

PSm-Sm

TSm-Sm

• • •
PS3-S0

TS3-S0

PS3-S1

TS3-S1

PS3-S2

TS3-S2

PS3-S3

TS3-S3

PS3-Sm

TS3-Sm

• • •
PS2-S0

TS2-S0

PS2-S1

TS2-S1

PS2-S2

TS2-S2

PS2-S3

TS2-S3

PS2-Sm

TS2-Sm

• • •
PS1-S0

TS1-S0

PS1-S1

TS1-S1

PS1-S2

TS1-S2

PS1-S3

TS1-S3

PS1-Sm

TS1-Sm

S0

S1

S2

S3

Sm

S0 Idle

System Call CPU Time

TS1S1

TS2S2

TSmSm

TS3S3

•
•
•

•
•
•

S0 Idle

System Call CPU Time

TS1S1 TS1S1

TS2S2 TS2S2

TSmSm TSmSm

TS3S3 TS3S3

•
•
•

•
•
•

S0 S1

• • •
PS0-S0

TS0-S0

PS0-S1

TS0-S1

PS0-S2

TS0-S2

PS0-S3

TS0-S3

PS0-Sm

TS0-Sm

S2 S3 Sm

•
•
•

•
•
•

•
•
•

•
•
•

• • •
PSm-So

TSm-S0

PSm-S1

TSm-S1

PSm-S2

TSm-S2

PSm-S3

TSm-S3

PSm-Sm

TSm-Sm

• • •
PS3-S0

TS3-S0

PS3-S1

TS3-S1

PS3-S2

TS3-S2

PS3-S3

TS3-S3

PS3-Sm

TS3-Sm

• • •
PS2-S0

TS2-S0

PS2-S1

TS2-S1

PS2-S2

TS2-S2

PS2-S3

TS2-S3

PS2-Sm

TS2-Sm

• • •
PS1-S0

TS1-S0

PS1-S1

TS1-S1

PS1-S2

TS1-S2

PS1-S3

TS1-S3

PS1-Sm

TS1-Sm

S0

S1

S2

S3

Sm

S0 S1

• • •
PS0-S0

TS0-S0

PS0-S1

TS0-S1

PS0-S2

TS0-S2

PS0-S3

TS0-S3

PS0-Sm

TS0-Sm

• • •• • •
PS0-S0

TS0-S0

PS0-S0

TS0-S0

PS0-S1

TS0-S1

PS0-S1

TS0-S1

PS0-S2

TS0-S2

PS0-S2

TS0-S2

PS0-S3

TS0-S3

PS0-S3

TS0-S3

PS0-Sm

TS0-Sm

PS0-Sm

TS0-Sm

S2 S3 Sm

•
•
•

•
•
•

•
•
•

•
•
•

• • •
PSm-So

TSm-S0

PSm-S1

TSm-S1

PSm-S2

TSm-S2

PSm-S3

TSm-S3

PSm-Sm

TSm-Sm

• • •• • •
PSm-So

TSm-S0

PSm-So

TSm-S0

PSm-S1

TSm-S1

PSm-S1

TSm-S1

PSm-S2

TSm-S2

PSm-S2

TSm-S2

PSm-S3

TSm-S3

PSm-S3

TSm-S3

PSm-Sm

TSm-Sm

PSm-Sm

TSm-Sm

• • •
PS3-S0

TS3-S0

PS3-S1

TS3-S1

PS3-S2

TS3-S2

PS3-S3

TS3-S3

PS3-Sm

TS3-Sm

• • •• • •
PS3-S0

TS3-S0

PS3-S0

TS3-S0

PS3-S1

TS3-S1

PS3-S1

TS3-S1

PS3-S2

TS3-S2

PS3-S2

TS3-S2

PS3-S3

TS3-S3

PS3-S3

TS3-S3

PS3-Sm

TS3-Sm

PS3-Sm

TS3-Sm

• • •
PS2-S0

TS2-S0

PS2-S1

TS2-S1

PS2-S2

TS2-S2

PS2-S3

TS2-S3

PS2-Sm

TS2-Sm

• • •• • •
PS2-S0

TS2-S0

PS2-S0

TS2-S0

PS2-S1

TS2-S1

PS2-S1

TS2-S1

PS2-S2

TS2-S2

PS2-S2

TS2-S2

PS2-S3

TS2-S3

PS2-S3

TS2-S3

PS2-Sm

TS2-Sm

PS2-Sm

TS2-Sm

• • •
PS1-S0

TS1-S0

PS1-S1

TS1-S1

PS1-S2

TS1-S2

PS1-S3

TS1-S3

PS1-Sm

TS1-Sm

• • •• • •
PS1-S0

TS1-S0

PS1-S0

TS1-S0

PS1-S1

TS1-S1

PS1-S1

TS1-S1

PS1-S2

TS1-S2

PS1-S2

TS1-S2

PS1-S3

TS1-S3

PS1-S3

TS1-S3

PS1-Sm

TS1-Sm

PS1-Sm

TS1-Sm

S0

S1

S2

S3

Sm

Node OS Call
State Vector Execution Environment Transition Matrix

November 1, 1999 10

How might a Node OS use an
Active Application Model?

• We can pool all states in the AA model beyond Idle (S0) into one composite
state (SA), creating a two-state Markov chain.

• If we assume that this chain is stationary, then the distribution of measured dwell
time in each state will be exponential.

• Given this assumption, the time to leave state S0 and SA can be written:

P(ε > t) = e**(-λ0t) (Time to leave S0)

P(T > t) = e **(-λt) (Time to leave SA)

Τhe distribution of average dwell times in SA is
λ∗ = 1/Τ, where T can be computed as:

where each Xj represents the
observed average dwell time in one
of the component states aggregated
together to form SA.

The distribution of average dwell times can be partitioned into two parts α and 1−α, where each partition represents
a region in which some proportion of the dwell times in SA fall. Since for an exponential distribution
α = e−λ∗tα, tα denotes a value above which α percent of the observations will be found. tα can be found as follows.

λ*tα = -log α

tα = -(1/λ*) log α

Substituting 1/T for λ*: tα = -T log α
This equation leads to an easily
computable threshold value.

November 1, 1999 11

Node OS Call State
Vector

Execution Environment Transition Matrix

System
Call

CPU Time To S0 To S1 To S2 To S3 To S4

S0 0.0000 From S0 0|0 .8|1234 .2|457 0|0 0|0

S1 0.0114 From S1 .05|2345 .6|347 .25|423 .1|256 0|0

S2 0.0165 From S2 .25|337 .15|1115 .2|313 .2|109 .2|92

S3 0.0280 From S3 .01|1632 .55|756 .04|577 .3|188 .1|89

Example: Consider the Following Model for an
AA Executing on an Active Network Node A

AA Model for Node A

0 250 500 750 1000 1250 1500 1750 2000 2250 2500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Distribution of CPU Time Usage

CPU Time

P
ro
ba
bi
lit
y

95th
percentile
(965 ms)

99th
percentile
(1,483 ms)

PD
F

CDF
Cumulative Distribution Function and
Probability Density Function computed from
AA Model above using equations covered on
preceding slide. (λ∗ = 0.0031)

The expected CPU time to execute the AA on
Node A is ~322 ms, while 95 percent of all
executions should require <= 965 ms of CPU
time and 99 percent of all executions should
require <= 1.483 seconds of CPU time.PDF

CDF

November 1, 1999 12

Application Model Transforms:
Node-to-Reference (NR) Transform

Node OS Call State
Vector

Execution Environment Transition Matrix

System Call CPU Time To S0 To S1 To S2 To S3 To S4

S0 0.0000 From S0 0|0 .8|2468 .2|914 0|0 0|0

S1 0.0057 From S1 .05|4690 .6|694 .25|846 .1|512 0|0

S2 0.0101 From S2 .25|674 .15|2230 .2|626 .2|218 .2|184

S3 0.0092 From S3 .01|3264 .55|1512 .04|1154 .3|376 .1|178

S4 0.0071 From S4 .6|7042 .1|1964 .2|690 .05|690 .05|214

Node to Reference Transformation

n := the index for the specific execution environment used for the
application

m := the number of system calls supported by a NodeOS

for i from 0 to m
SCvector[i] := Sreference[i]/Snode[i] * SCvector[i]
for j from 0 to m

EEmatrix[i,j].T := EEreference[n]/EEnode[n] * EEmatrix[i,j].T
end for

end for

AA Model for Reference Node and for Transmission on the Network

November 1, 1999 13

Application Model Transforms:
Reference-to-Node (RN) Transform

AA Model for Node B
Node OS Call State

Vector
Execution Environment Transition Matrix

System Call CPU Time To S0 To S1 To S2 To S3 To S4

S0 0.0000 From S0 0|0 .8|281 .2|104 0|0 0|0

S1 0.0047 From S1 .05|535 .6|79 .25|96 .1|58 0|0

S2 0.0092 From S2 .25|77 .15|254 .2|71 .2|25 .2|21

S3 0.0069 From S3 .01|372 .55|172 .04|132 .3|43 .1|20

S4 0.0065 From S4 .6|803 .1|224 .2|79 .05|79 .05|24

Reference to Node Transformation

n := the index for the specific execution environment used for the
application

m := the number of system calls supported by a NodeOS

for i from 0 to m
SCvector[i] := Snode[i]/Sreference[i] * SCvector[i]
for j from 0 to m

EEmatrix[i,j].T := EEnode[n]/EEreference[n] * EEmatrix[i,j].T
end for

end for

November 1, 1999 14

Recalculating CPU Time Requirements for the
AA on Active Network Node B

0 60 120 180 240 300 360 420 480 540 600
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Distribution of CPU Time Usage

CPU Time

P
ro
ba
bi
lit
y

95th
percentile
(220 ms)

99th
percentile
(338 ms)

PD
F

CDF

The AA executes on Node B about 5x faster than on Node A.

Cumulative Distribution Function
and Probability Density Function
computed from AA Model using
figures from the preceding slide.
(λ∗ = 0.0136)

The expected CPU time to execute
the AA on Node B is ~73 ms, while
95 percent of all executions should
require <= 220 ms of CPU time and
99 percent of all executions should
require <= 338 ms of CPU time.

CDF

PDF

November 1, 1999 15

Determining Models for
Active Nodes and Applications

• How can Active Nodes be calibrated?

• How can Active Application models be generated?

Each of these topics is discussed in the next few slides.

November 1, 1999 16

A Taxonomy of Selected Existing
Computer Performance Benchmarks

Synthetic Real

DynamicStatic

Hybrid

Dynamic Dynamic

Single-
Thread

Single-
Thread

Multi-
Thread

Single-
Thread

Multi-
Thread Adaptive

• Dhrystone
(MIPS)

• Whetstone
(MFLOPS)

• BizStone
• GraphStone
• ThinkStone

• MemStone
• TPC-A,B,C,D

• Wintune98

• Composite
Theoretical
Performance
(MTOPS)

• WinBench99
(with CPUmark99)

• SPEC95
• SYSmark98

• WinStone99
• NetBench 6.0
• WebBench 3.0
• SPECweb96

Benchmarks

Synthetic Real

DynamicStatic

Hybrid

Dynamic Dynamic

Single-
Thread

Single-
Thread

Multi-
Thread

Single-
Thread

Multi-
Thread Adaptive

• Dhrystone
(MIPS)

• Whetstone
(MFLOPS)

• BizStone
• GraphStone
• ThinkStone

• MemStone
• TPC-A,B,C,D

• Wintune98

• Composite
Theoretical
Performance
(MTOPS)

• WinBench99
(with CPUmark99)

• SPEC95
• SYSmark98

• WinStone99
• NetBench 6.0
• WebBench 3.0
• SPECweb96

Benchmarks

November 1, 1999 17

Calibrating Active Network Nodes

• Possible approaches to defining benchmark workloads for Active Nodes
– Use real Active Applications to construct a workload for each EE

– Use representative applications that behave as we expect major classes of AAs to
behave

– Use a synthetic benchmark that repeatedly exercises all functions in an EE

– Use a hybrid approach

– Benchmark only a reference node and then use a static calculation (e.g., MTOPS) to
estimate performance on other nodes

• Node OS call calibration can be done with a synthetic benchmark program
that repeatedly exercises each system call

• When and how to run the calibration workloads?
– Off-line (needs no run-time resources, but might lag system configuration changes)

– Boot-time (needs no run-time resources and will catch many configuration changes,
but could lengthen the boot process substantially and may not work well with future
dynamic operating systems)

– Off-line with Run-time Adjustments (advantages of off-line and should also catch
configuration changes with some lag time, but will incur execution overhead and
might be difficult to design and implement)

November 1, 1999 18

Generating Active Application Models

During testing process an AA is run through many execution paths – an
execution trace can be generated in a form similar to the following:

<SCi> <SCj> <SCTi> <EETi,j> <CPUi,j>

Where each line represents a transition between two Node OS system calls, and

<SCi> is a unique integer number assigned to identify the "from"
NodeOS system call,

<SCj> is a unique integer number assigned to identify the "to" NodeOS system call,
<SCTi> is the CPU time spent while executing the "from" system call,
<EETi,j> is the CPU time spent while executing in the EE between <SCi> and <SCj>,

and
<CPUi,j> is total of <SCTi> + <EETi,j>.

A program can be written to automatically generate an AA
Model (in vector and matrix form) from such a trace.

November 1, 1999 19

Proof-of-Concept: Trace Generation

• Modified Linux kernel to generate CPU usage execution
traces with minimal measurement overhead

– Retrieve CPU time used by EE process when entering and
exiting each system call, including the scheduler, and write a
trace log event

– Needed to use special Pentium instructions to grab CPU time
in nanosecond granularity for measuring system calls

• Generated CPU usage execution traces for several AAs in
the ANTS EE running on top of Linux

– Ping, Auction, Multicast, and TCP denial-of-service defense

– Ran a number of execution scenarios for each application

• An example follows

November 1, 1999 20

Proof-of-Concept: An Example

Linux kernel (with
Measurement Mods)

Unmodified
Linux kernel

Unmodified
Solaris kernel

LAN

ANTS
EE

Ping
AA

ANTS
EE

Ping
AA

ANTS
EE

Ping
AA

Pentium II 333 MHz 64 MBs

CPU Usage Execution
Traces

Role: Sender Role: Target
Role: Router

Scenario 1: Intermediate Node Gets Ping Request with No Code Available

Ping Req.

Get Code

Ping Code

Ping Req.

Get Code

Ping Code

Scenario 2: Intermediate Node Gets Ping Request with Code Available
Scenario 3: Ping as Source Node with Intermediate Node Needing Code
Scenario 4: Ping as Source Node with Intermediate Node Having Code
Scenario 5: Target of Ping but Needing Code
Scenario 6: Target of Ping but Having Code

. . .
Scenario n: According to Application Test Plan

November 1, 1999 21

Proof-of-Concept: Results

We are currently collecting CPU usage data on several
Active Applications.

We intend to have this data analyzed for presentation at
the PI meeting, but we could not meet the November 1, 1999
cutoff for submission of our slides.

I guess you will have to listen to the presentation to learn
these results.

November 1, 1999 22

Potential Benefits of Success
• Successful results will enable resource management systems on

heterogeneous Active Nodes to address CPU time in addition to bandwidth
and memory; nodes can enforce CPU usage contracts.

• Successful results will open new research possibilities in resource
management for Active Networks.

– Admission control decisions based on CPU, bandwidth, and memory
requirements.

– Find paths with sufficient CPU availability, while also meeting throughput,
delay, and jitter requirements for an Active Application.

– Query an Active Network with an Active Application’s performance
constraints and requirements for CPU time, memory, and bandwidth;
sort through multiple path proposals with associated costs to select one.

– Techniques might also apply to other mobile code systems intended for
heterogeneous nodes.

November 1, 1999 23

Future Work: FY 00

Task 1: Develop and evaluate an Active Application (AA)
model based on statistical analysis of AAs – let us
know about yours!

Task 2: Design and develop a Self-Calibrating Active Node
– Calibration workload for EEs and for Node OS calls
– A self-calibration mechanism and related algorithms

Task 3: Design and implement an automated Active
Application (AA) model generator

Task 4: Specify, design, and implement additional Node OS
calls required to support calibration

November 1, 1999 24

Future Work: FY 01

Task 5: Prototype and evaluate our components as a system:
across multiple Active Nodes, EEs, AAs, Node
operating systems.

Task 6: Update prototype based on results from the
evaluation.

Task 7: Integrate prototype with an Active Network
resource manager.

Task 8: Demonstrate the ability to enforce CPU resource
usage policy.

